友情支持

如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜

支付宝

微信

有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。

wx jikerizhi

公众号的微信号是: jikerizhi因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。

300. 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500

  • -104 <= nums[i] <= 104

进阶:

  • 你能将算法的时间复杂度降低到 \(O(n*log(n))\) 吗?

思路分析

最简单易懂,也是最容易想到的解法就是:将指定数 nums[i] 与前面的每一个数都去比较一下,记录一下大于的次数。使用 dp[k] 记录以 k 结尾时的最大增长子序列长度。

动态规划+二分查找的算法还需要再仔细研究一下。还是有些懵逼!

  • 一刷

  • 二刷

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/**
 * Runtime: 2 ms, faster than 76.15% of Java online submissions for Longest Increasing Subsequence.
 *
 * Memory Usage: 42.1 MB, less than 5.00% of Java online submissions for Longest Increasing Subsequence.
 *
 * Copy from: https://leetcode.cn/problems/longest-increasing-subsequence/solutions/24173/zui-chang-shang-sheng-zi-xu-lie-dong-tai-gui-hua-2/[最长上升子序列(动态规划 + 二分查找,清晰图解) - 最长上升子序列 - 力扣(LeetCode)]
 *
 * @author D瓜哥 · https://www.diguage.com
 * @since 2020-01-23 10:24
 */
public int lengthOfLIS(int[] nums) {
    if (Objects.isNull(nums) || nums.length == 0) {
        return 0;
    }
    int[] tails = new int[nums.length];
    int result = 0;
    for (int num : nums) {
        int i = 0, j = result;
        while (i < j) {
            int m = (i + j) / 2;
            if (tails[m] < num) {
                i = m + 1;
            } else {
                j = m;
            }
        }
        tails[i] = num;
        if (result == j) {
            result++;
        }
    }
    return result;
}

/**
 * Runtime: 2 ms, faster than 76.15% of Java online submissions for Longest Increasing Subsequence.
 *
 * Memory Usage: 42.1 MB, less than 5.00% of Java online submissions for Longest Increasing Subsequence.
 *
 * Copy from: https://leetcode.com/problems/longest-increasing-subsequence/solution/[Longest Increasing Subsequence solution - LeetCode]
 */
public int lengthOfLISDPBS(int[] nums) {
    if (Objects.isNull(nums) || nums.length == 0) {
        return 0;
    }
    int[] dp = new int[nums.length];
    int len = 0;
    for (int num : nums) {
        int i = Arrays.binarySearch(dp, 0, len, num);
        if (i < 0) {
            i = -(i + 1);
        }
        dp[i] = num;
        if (i == len) {
            len++;
        }
    }
    return len;
}

/**
 * Runtime: 56 ms, faster than 5.76% of Java online submissions for Longest Increasing Subsequence.
 *
 * Memory Usage: 43.2 MB, less than 5.00% of Java online submissions for Longest Increasing Subsequence.
 *
 * Copy from: https://leetcode.com/problems/longest-increasing-subsequence/solution/[Longest Increasing Subsequence solution - LeetCode]
 */
public int lengthOfLISDP(int[] nums) {
    if (Objects.isNull(nums) || nums.length == 0) {
        return 0;
    }
    int[] dp = new int[nums.length];
    dp[0] = 1;
    int result = 1;
    for (int i = 1; i < nums.length; i++) {
        int maxval = 0;
        for (int j = 0; j < i; j++) {
            if (nums[i] > nums[j]) {
                maxval = Math.max(maxval, dp[j]);
            }
        }
        dp[i] = maxval + 1;
        result = Math.max(result, dp[i]);
    }

    return result;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
/**
 * @author D瓜哥 · https://www.diguage.com
 * @since 2025-05-08 16:55:25
 */
public int lengthOfLIS(int[] nums) {
  int[] dp = new int[nums.length];
  // 每个数都是一个子序列,满足严格递增
  Arrays.fill(dp, 1);
  int result = 1;
  // 双重循环等于将指定数nums[i]与前面的每一个数都去比较一下
  for (int i = 0; i < nums.length; i++) {
    for (int j = 0; j < i; j++) {
      if (nums[j] < nums[i]) {
        dp[i] = Math.max(dp[i], dp[j] + 1);
      }
      result = Math.max(result, dp[i]);
    }
  }
  return result;
}

参考资料