友情支持
如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜
有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。
公众号的微信号是: jikerizhi 。因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。 |
188. Best Time to Buy and Sell Stock IV
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
针对 一个方法团灭 6 道股票问题 - 最佳买卖股票时机含冷冻期 - 力扣(LeetCode) 这个解题框架,进行小试牛刀。
public int maxProfit(int maxK, int[] prices) {
if (Objects.isNull(prices) || prices.length == 0 || maxK == 0) {
return 0;
}
if (maxK > prices.length / 2) { (1)
return maxProfit(prices);
}
int[][][] dp = new int[prices.length][maxK + 1][2]; (2)
for (int i = 0; i < prices.length; i++) {
for (int k = maxK; k >= 1; k--) {
if (i == 0) {
dp[i][k][0] = 0;
dp[i][k][1] = -prices[i]; (3)
continue;
}
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
}
}
return dp[prices.length - 1][maxK][0];
}
public int maxProfit(int[] prices) {
int dp0 = 0;
int dp1 = Integer.MIN_VALUE;
for (int i = 0; i < prices.length; i++) {
int temp = dp0; (4)
dp0 = Math.max(dp0, dp1 + prices[i]);
dp1 = Math.max(dp1, temp - prices[i]); (4)
}
return dp0;
}
1 | 为什么只需要大于 prices.length / 2 时就可以调用没有限制的函数? |
2 | 为什么要把数组大小设置为 maxK + 1 ,而不是 maxK ? |
3 | 为什么有时初始化成 -prices[i] ,而有时又是 Integer.MIN_VALUE ? |
4 | 为什么有时需要保存这个变量?而有时又不需要? |
思考题:再仔细思考思考这个解题框架。
参考资料
Say you have an array for which the i - th element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Example 1:
Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Example 2:
Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* Runtime: 11 ms, faster than 19.87% of Java online submissions for Best Time to Buy and Sell Stock IV.
* Memory Usage: 40.9 MB, less than 13.89% of Java online submissions for Best Time to Buy and Sell Stock IV.
*
* Copy from https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/solution/yi-ge-fang-fa-tuan-mie-6-dao-gu-piao-wen-ti-by-lab/[一个方法团灭 6 道股票问题 - 最佳买卖股票时机含冷冻期 - 力扣(LeetCode)]
*/
public int maxProfit(int maxK, int[] prices) {
if (Objects.isNull(prices) || prices.length == 0 || maxK == 0) {
return 0;
}
if (maxK > prices.length / 2) {
return maxProfit(prices);
}
int[][][] dp = new int[prices.length][maxK + 1][2];
for (int i = 0; i < prices.length; i++) {
for (int k = maxK; k >= 1; k--) {
if (i == 0) {
dp[i][k][0] = 0;
dp[i][k][1] = -prices[i];
continue;
}
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
}
}
return dp[prices.length - 1][maxK][0];
}
public int maxProfit(int[] prices) {
int dp0 = 0;
int dp1 = Integer.MIN_VALUE;
for (int i = 0; i < prices.length; i++) {
int temp = dp0;
dp0 = Math.max(dp0, dp1 + prices[i]);
dp1 = Math.max(dp1, temp - prices[i]);
}
return dp0;
}