友情支持
如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜
有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。
公众号的微信号是: jikerizhi 。因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。 |
53. Maximum Subarray
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public int maxSubArrayDP(int[] nums) {
// TODO Dynamic Programming
// TODO Divide and Conquer
return 0;
}
/**
* Runtime: 1 ms, faster than 86.91% of Java online submissions for Maximum Subarray.
*
* Memory Usage: 42.1 MB, less than 5.16% of Java online submissions for Maximum Subarray.
*/
public int maxSubArray(int[] nums) {
if (Objects.isNull(nums) || nums.length == 0) {
return 0;
}
int largestSum = nums[0];
int largestEndingHere = nums[0];
for (int i = 1; i < nums.length; i++) {
largestEndingHere = Math.max(largestEndingHere + nums[i], nums[i]);
largestSum = Math.max(largestSum, largestEndingHere);
}
return largestSum;
}