友情支持

如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜

支付宝

微信

有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。

wx jikerizhi

公众号的微信号是: jikerizhi因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。

53. Maximum Subarray

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
public int maxSubArrayDP(int[] nums) {
    // TODO Dynamic Programming
    // TODO Divide and Conquer
    return 0;
}
/**
 * Runtime: 1 ms, faster than 86.91% of Java online submissions for Maximum Subarray.
 *
 * Memory Usage: 42.1 MB, less than 5.16% of Java online submissions for Maximum Subarray.
 */
public int maxSubArray(int[] nums) {
    if (Objects.isNull(nums) || nums.length == 0) {
        return 0;
    }
    int largestSum = nums[0];
    int largestEndingHere = nums[0];
    for (int i = 1; i < nums.length; i++) {
        largestEndingHere = Math.max(largestEndingHere + nums[i], nums[i]);
        largestSum = Math.max(largestSum, largestEndingHere);
    }
    return largestSum;
}