友情支持

如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜

支付宝

微信

有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。

wx jikerizhi

公众号的微信号是: jikerizhi因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。

501. Find Mode in Binary Search Tree

Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than or equal to the node’s key.

  • The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.

  • Both the left and right subtrees must also be binary search trees.

For example:

Given BST [1,null,2,2],

   1
    \
     2
    /
   2

return [2].

Note: If a tree has more than one mode, you can return them in any order.

Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).

思路分析

看到二叉搜索树,应该条件反射般想到二叉搜索树的中根遍历是有序的。

由于中根遍历有序的特性,那么相同的数字就会一起出现,在出现的时候,统计每个数字出现的次数即可。思想容易理解,重点是代码的实现。有两个地方可以稍微简化一下代码:

  • 先更新要处理的数字及次数;

  • 然后根据次数,就可以处理需要的结果。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
 * 根据相同数字出现在一起的提示,写出来的。
 */
public int[] findMode(TreeNode root) {
  if (root == null) {
    return new int[0];
  }
  List<Integer> result = new ArrayList<>();
  TreeNode baseNode = null;
  int count = 0;
  int maxCount = Integer.MIN_VALUE;
  TreeNode cur = root;
  TreeNode mostRight = null;
  while (cur != null) {
    mostRight = cur.left;
    if (mostRight != null) {
      while (mostRight.right != null && mostRight.right != cur) {
        mostRight = mostRight.right;
      }
      if (mostRight.right == null) {
        mostRight.right = cur;
        cur = cur.left;
        continue;
      } else {
        mostRight.right = null;
      }
    }
    // 在这里,利用二叉搜索树中序遍历,序列是有序的特性
    // 相同的数字就会出现在一起,这是统计每个数字的出现次数
    // baseNode == null 第一次遍历到这里
    // baseNode.val != cur.val 进行到下一个数字
    if (baseNode == null || baseNode.val != cur.val) {
      baseNode = cur;
      count = 1;
    } else {
      count++;
    }
    if (count > maxCount) {
      result.clear();
      result.add(cur.val);
      maxCount = count;
    } else if (count == maxCount) {
      result.add(cur.val);
    }
    cur = cur.right;
  }
  int[] nums = new int[result.size()];
  for (int i = 0; i < result.size(); i++) {
    nums[i] = result.get(i);
  }
  return nums;
}