友情支持

如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜

支付宝

微信

有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。

wx jikerizhi

公众号的微信号是: jikerizhi因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。

11. Container With Most Water

Given n non-negative integers a1, a2, …​, a~n ~, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

*Note: *You may not slant the container and n is at least 2.

question 11

[.small]#The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49. #

Example:

Input: [1,8,6,2,5,4,8,3,7]
Output: 49

解题分析

双指针左右夹逼,保留高个,移动低个。

这里有个疑问,不考虑中间

  • 一刷

  • 二刷

  • 三刷

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
/**
 * @author D瓜哥 · https://www.diguage.com
 * @since 2018-07-13
 */
public static int maxArea(int[] height) {
  int result = 0;
  int left = 0, right = height.length - 1;
  while (left < right) {
    int area = Math.min(height[left], height[right]) * (right - left);
    result = Math.max(result, area);
    if (height[left] < height[right]) {
      left++;
    } else {
      right--;
    }
  }
  return result;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
/**
 * @author D瓜哥 · https://www.diguage.com
 * @since 2024-08-15 19:54:27
 */
public static int maxArea(int[] height) {
  int left = 0, right = height.length - 1;
  int result = 0;
  while (left < right) {
    if (height[left] < height[right]) {
      result = Math.max(result, height[left] * (right - left));
      left++;
    } else {
      result = Math.max(result, height[right] * (right - left));
      right--;
    }
  }
  return result;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
/**
 * @author D瓜哥 · https://www.diguage.com
 * @since 2024-09-16 19:38:05
 */
public int maxArea(int[] height) {
  int result = 0;
  int left = 0, right = height.length - 1;
  while (left < right) {
    result = Math.max(result,
      Math.min(height[left], height[right]) * (right - left - 1));
    if (height[left] < height[right]) {
      left++;
    } else {
      right--;
    }
  }
  return result;
}