友情支持

如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜

支付宝

微信

有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。

wx jikerizhi

公众号的微信号是: jikerizhi因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。

52. N-Queens II

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return the number of distinct solutions to the n-queens puzzle.

0052 00
Example:
Input: 4
Output: 2
Explanation: There are two distinct solutions to the 4-queens puzzle as shown below.
[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]

解题分析

解题分析参考 51. N-Queens

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/**
 * Runtime: 1 ms, faster than 95.68% of Java online submissions for N-Queens II.
 * Memory Usage: 36 MB, less than 8.70% of Java online submissions for N-Queens II.
 */
private int result = 0;
public int totalNQueens(int n) {
    int[][] matrix = new int[n][n];
    backtrack(matrix, 0, 0);
    return result;
}

private void backtrack(int[][] matrix, int y, int step) {
    if (step == matrix.length) {
        result++;
        return;
    }
    for (int xi = 0; xi < matrix[0].length; xi++) {
        if (isValid(matrix, y, xi)) {
            matrix[y][xi] = 1;
            backtrack(matrix, y + 1, step + 1);
            matrix[y][xi] = 0;
        }
    }
}

private boolean isValid(int[][] matrix, int y, int x) {
    int len = matrix.length;
    // 同列
    for (int i = 0; i < y; i++) {
        if (matrix[i][x] == 1) {
            return false;
        }
    }
    // 左上角
    for (int i = 1; i < len && y - i >= 0 && x - i >= 0; i++) {
        if (matrix[y - i][x - i] == 1) {
            return false;
        }
    }
    // 右上角:从右上角到最下角的对角线,他们 "行号 + 列号 = 常数"
    int sum = x + y;
    for (int yi = y - 1; yi >= 0 && 0 <= sum - yi && sum - yi < len; yi--) {
        if (matrix[yi][sum - yi] == 1) {
            return false;
        }
    }
    return true;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/**
 * 自己实现
 */
private int result = 0;

public int totalNQueens(int n) {
  int[][] matrix = new int[n][n];
  backtrack(matrix, 0, 0);
  return result;
}

private void backtrack(int[][] matrix, int step, int count) {
  int size = matrix.length;
  int pow = size * size;
  printMatrix(matrix);
  if (step > pow) {
    return;
  } else if (size == count) {
    result++;
  } else {
    for (int i = step; i < pow; i++) {
      int row = i / size;
      int col = i % size;
      if (isValid(matrix, row, col)) {
        matrix[row][col] = 1;
        backtrack(matrix, (row + 1) * size, count + 1);
        matrix[row][col] = 0;
      }
    }
  }
}

private boolean isValid(int[][] matrix, int row, int col) {
  int length = matrix.length;
  for (int i = 0; i < length; i++) {
    if (matrix[row][i] == 1) {
      return false;
    }
    if (i < row && matrix[i][col] == 1) {
      return false;
    }
  }
  for (int i = 0; i < length; i++) {
    // 左上角
    if (0 <= row - i && 0 <= col - i && matrix[row - i][col - i] == 1) {
      return false;
    }
    // 右上角
    if (0 <= row - i && col + i < length && matrix[row - i][col + i] == 1) {
      return false;
    }
  }
  return true;
}