友情支持
如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜
有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。
公众号的微信号是: jikerizhi 。因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。 |
119. Pascal’s Triangle II
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal’s triangle.
Note that the row index starts from 0.

In Pascal’s triangle, each number is the sum of the two numbers directly above it.
Example:
Input: 3 Output: [1,3,3,1]
Follow up:
Could you optimize your algorithm to use only O(k) extra space?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
* Runtime: 1 ms, faster than 89.02% of Java online submissions for Pascal's Triangle II.
*
* Memory Usage: 33.7 MB, less than 6.17% of Java online submissions for Pascal's Triangle II.
*/
public List<Integer> getRow(int rowIndex) {
List<Integer> result = new ArrayList<>(rowIndex * 3 / 2 + 1);
result.add(1);
for (int i = 1; i <= rowIndex; i++) {
int left = 1;
for (int j = 1; j < i + 1; j++) {
int right = j == result.size() ? 0 : result.get(j);
int element = left + right;
if (j == result.size()) {
result.add(element);
} else {
result.set(j, element);
}
left = right;
}
}
return result;
}