友情支持

如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜

支付宝

微信

有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。

wx jikerizhi

公众号的微信号是: jikerizhi因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。

62. Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

robot maze

Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

思路分析

  • 一刷

  • 二刷

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/**
 * @author D瓜哥 · https://www.diguage.com
 * @since 2019-10-26 22:56
 */
public int uniquePaths(int m, int n) {
    if (m == 0 || n == 0) {
        return 0;
    }
    int[] row = new int[n];
    Arrays.fill(row, 1);
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            row[j] = row[j - 1] + row[j];
        }
    }
    return row[n - 1];
}

/**
 * timeout
 */
public int uniquePathsBottomUp(int m, int n) {
    if (m == 0 || n == 0) {
        return 0;
    }
    if (m == 1 || n == 1) {
        return 1;
    }
    return uniquePathsBottomUp(m - 1, n) + uniquePathsBottomUp(m, n - 1);
}

/**
 * Runtime: 0 ms, faster than 100.00% of Java online submissions for Unique Paths.
 * <p>
 * Memory Usage: 33 MB, less than 5.10% of Java online submissions for Unique Paths.
 */
public int uniquePathsMatrix(int m, int n) {
    if (m == 0 || n == 0) {
        return 0;
    }
    int[][] paths = new int[m][n];
    for (int i = 0; i < m; i++) {
        paths[i][0] = 1;
    }
    for (int i = 1; i < n; i++) {
        paths[0][i] = 1;
    }
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            paths[i][j] = paths[i - 1][j] + paths[i][j - 1];
        }
    }
    return paths[m - 1][n - 1];
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
 * @author D瓜哥 · https://www.diguage.com
 * @since 2024-09-12 15:16:31
 */
public int uniquePaths(int m, int n) {
  // 1. dp 表示走到某个节点一共有多少路径
  int[][] dp = new int[m][n];
  // 3. 第一行只有一种走法
  for (int i = 0; i < m; i++) {
    dp[i][0] = 1;
  }
  // 3. 第一列也只有一种走法。
  for (int i = 0; i < n; i++) {
    dp[0][i] = 1;
  }
  // 4. 遍历顺序:从左上逐步向右下遍历
  for (int i = 1; i < m; i++) {
    for (int j = 1; j < n; j++) {
      // 2. 由于只能从上或者从左走过来,
      //    那么路径数量就是两个节点相加
      dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
    }
  }
  return dp[m - 1][n - 1];
}