友情支持

如果您觉得这个笔记对您有所帮助,看在D瓜哥码这么多字的辛苦上,请友情支持一下,D瓜哥感激不尽,😜

支付宝

微信

有些打赏的朋友希望可以加个好友,欢迎关注D 瓜哥的微信公众号,这样就可以通过公众号的回复直接给我发信息。

wx jikerizhi

公众号的微信号是: jikerizhi因为众所周知的原因,有时图片加载不出来。 如果图片加载不出来可以直接通过搜索微信号来查找我的公众号。

63. 不同路径 II

给定一个 m x n 的整数数组 grid。一个机器人初始位于 左上角(即 grid[0][0])。机器人尝试移动到 右下角(即 grid[m - 1][n - 1])。机器人每次只能向下或者向右移动一步。

网格中的障碍物和空位置分别用 10 来表示。机器人的移动路径中不能包含 任何 有障碍物的方格。

返回机器人能够到达右下角的不同路径数量。

测试用例保证答案小于等于 2 * 109

示例 1:

0063 01
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

0063 02
输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length

  • n == obstacleGrid[i].length

  • 1 <= m, n <= 100

  • obstacleGrid[i][j]01

思路分析

0063 03
  • 一刷

  • 二刷

  • 三刷

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/**
 * Runtime: 0 ms, faster than 100.00% of Java online submissions for Unique Paths II.
 * <p>
 * Memory Usage: 40.5 MB, less than 33.84% of Java online submissions for Unique Paths II.
 *
 * @author D瓜哥 · https://www.diguage.com
 * @since 2019-10-26 23:50
 */
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
    if (Objects.isNull(obstacleGrid)
            || obstacleGrid.length == 0
            || obstacleGrid[0].length == 0
            || obstacleGrid[0][0] == 1) {
        return 0;
    }
    obstacleGrid[0][0] = 1;

    int m = obstacleGrid.length;
    for (int i = 1; i < m; i++) {
        if (obstacleGrid[i][0] == 0 && obstacleGrid[i - 1][0] == 1) {
            obstacleGrid[i][0] = 1;
        } else {
            obstacleGrid[i][0] = 0;
        }
    }
    int n = obstacleGrid[0].length;
    for (int j = 1; j < n; j++) {
        if (obstacleGrid[0][j] == 0 && obstacleGrid[0][j - 1] == 1) {
            obstacleGrid[0][j] = 1;
        } else {
            obstacleGrid[0][j] = 0;
        }
    }
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            if (obstacleGrid[i][j] == 1) {
                obstacleGrid[i][j] = 0;
            } else {
                obstacleGrid[i][j] = obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1];
            }
        }
    }
    return obstacleGrid[m - 1][n - 1];
}

/**
 * Runtime: 1 ms, faster than 23.04% of Java online submissions for Unique Paths II.
 * <p>
 * Memory Usage: 40.5 MB, less than 35.38% of Java online submissions for Unique Paths II.
 */
public int uniquePathsWithObstaclesMy(int[][] obstacleGrid) {
    if (Objects.isNull(obstacleGrid)
            || obstacleGrid.length == 0
            || obstacleGrid[0].length == 0) {
        return 0;
    }
    int m = obstacleGrid.length;
    int n = obstacleGrid[0].length;
    boolean hasObstacle = false;
    for (int i = 0; i < n; i++) {
        int value = obstacleGrid[0][i];
        if (value == 1) {
            hasObstacle = true;
            obstacleGrid[0][i] = -1;
        } else {
            if (hasObstacle) {
                obstacleGrid[0][i] = 0;
            } else {
                obstacleGrid[0][i] = 1;
            }
        }
    }
    hasObstacle = false;
    if (obstacleGrid[0][0] == -1) {
        hasObstacle = true;
    }
    for (int i = 1; i < m; i++) {
        int value = obstacleGrid[i][0];
        if (hasObstacle) {
            obstacleGrid[i][0] = 0;
        }
        if (value == 1) {
            hasObstacle = true;
            obstacleGrid[i][0] = -1;
        } else {
            if (hasObstacle) {
                obstacleGrid[i][0] = 0;
            } else {
                obstacleGrid[i][0] = 1;
            }
        }
    }

    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            int value = obstacleGrid[i][j];
            if (value == 1) {
                obstacleGrid[i][j] = -1;
            } else {
                int top = obstacleGrid[i - 1][j];
                if (top == -1) {
                    top = 0;
                }

                int left = obstacleGrid[i][j - 1];
                if (left == -1) {
                    left = 0;
                }
                obstacleGrid[i][j] = top + left;
            }
        }
    }
    return Math.max(obstacleGrid[m - 1][n - 1], 0);
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/**
 * @author D瓜哥 · https://www.diguage.com
 * @since 2019-10-26 23:50
 */
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
  int row = obstacleGrid.length;
  int column = obstacleGrid[0].length;
  // 1. obstacleGrid 表示走到某个节点一共有多少路径
  //    将障碍设置为-1,便于和 0 区分
  for (int i = 0; i < row; i++) {
    for (int j = 0; j < column; j++) {
      if (obstacleGrid[i][j] == 1) {
        obstacleGrid[i][j] = -1;
      }
    }
  }
  // 3. 第一行也只有一种走法,如果有障碍,则后面的路径为0
  for (int i = 0; i < column; i++) {
    if (obstacleGrid[0][i] == -1) {
      break;
    }
    obstacleGrid[0][i] = 1;
  }
  // 3. 第一列只有一种走法,如果有障碍,则后面的路径为0
  for (int i = 0; i < row; i++) {
    if (obstacleGrid[i][0] == -1) {
      break;
    }
    obstacleGrid[i][0] = 1;
  }
  printMatrix(obstacleGrid);
  // 4. 确定遍历顺序:从左上向右下遍历
  for (int i = 1; i < row; i++) {
    for (int j = 1; j < column; j++) {
      if (obstacleGrid[i][j] == -1) {
        continue;
      }
      // 2. 确定递推公式
      int mi = 0;
      if (obstacleGrid[i - 1][j] != -1) {
        mi = obstacleGrid[i - 1][j];
      }
      int ni = 0;
      if (obstacleGrid[i][j - 1] != -1) {
        ni = obstacleGrid[i][j - 1];
      }
      obstacleGrid[i][j] = mi + ni;
      printMatrix(obstacleGrid);
    }
  }
  return obstacleGrid[row - 1][column - 1] == -1 ? 0 : obstacleGrid[row - 1][column - 1];
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/**
 * @author D瓜哥 · https://www.diguage.com
 * @since 2025-04-18 17:32:04
 */
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
  boolean obstacled = false;
  boolean firstObstacle = obstacleGrid[0][0] == 1;
  for (int i = 0; i < obstacleGrid[0].length; i++) {
    if (obstacleGrid[0][i] == 1) {
      obstacleGrid[0][i] = 0;
      obstacled = true;
    } else {
      if (obstacled) {
        obstacleGrid[0][i] = 0;
      } else {
        obstacleGrid[0][i] = 1;
      }
    }
  }
  obstacled = false;
  int rows = obstacleGrid.length;
  for (int i = 1; i < rows; i++) {
    if (obstacleGrid[i][0] == 1) {
      obstacleGrid[i][0] = 0;
      obstacled = true;
    } else {
      if (obstacled || firstObstacle) {
        obstacleGrid[i][0] = 0;
      } else {
        obstacleGrid[i][0] = 1;
      }
    }
  }
  for (int i = 1; i < rows; i++) {
    for (int j = 1; j < obstacleGrid[i].length; j++) {
      if (obstacleGrid[i][j] == 1) {
        obstacleGrid[i][j] = 0;
      } else {
        obstacleGrid[i][j] = obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1];
      }
    }
  }
  return obstacleGrid[rows - 1][obstacleGrid[rows - 1].length - 1];
}